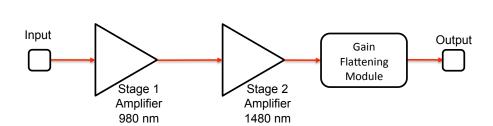


EDFA-GI-B

EDFA-GI-B


Gain Flattened EDFA for R&D Application

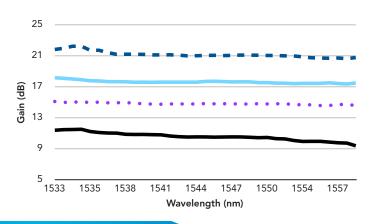
The Optilab EDFA-GI-B is a line of Gain-Flattening Benchtop Erbium-Doped Fiber Amplifiers designed for laboratory testing and research applications of a DWDM system. When a standard EDFA is used to amplify multi-channel DWDM signals, the output power level of various channels will vary according to the gain profile of the erbium fiber. The gain variation can be as great as 6 dB in magnitude. The EDFA-GI-B is unique in its dual-stage amplification and internal Gain Flattening Filter (GFF) to compensate the erbium fiber gain variation. This design enables the EDFA-GI-B to reduce the gain variation to ± 0.5dB over its full operating wavelength range, 1530 nm to 1560 nm. Depending on the input power level of each channel, an EDFA-GR is able to amplify up to 64 DWDM channels. The EDFA-GI-B is a versatile and powerful fiber amplifier, incorporating four pump sources (two 980 nm lasers and two 1480 nm lasers). With all four pump lasers set to maximum operating current, the total output power level of the EDFA-GI-B can reach +24 dBm (200mW). To provide maximum flexibility, each pump laser's operating current can be individually adjusted for optimal gain characteristics for different input channels/power level requirements. Housed inside a laboratory-grade benchtop case, EDFA-GI-B has easy-to-use control interface and clear LCD display. This amplifier is constructed with 100% Telcordia-qualified components to ensure 15+ years of continuous operating life. Contact Optilab for more information.

Features

- Compatible with 10 Gb/s and 40 Gb/s
- Channel spacing of 100 GHz or 50 GHz
- Flatten gain amplification from 1530 1560 nm
- Amplify 8 to 64 DWDM channels
- Output level can be varied up to +24 dBm
- Four pump sources controlled individually
- Two 980 nm pump lasers
- Two 1480 nm pump lasers
- 3 year warranty standard

Functional Diagram

Applications


- Laboratory Test and Measurement
- Test Instrumentation
- R&D

Gain Flattened EDFA for R&D Application | EDFA-GI-B

OPTIONS	Optical Specifications	
EDFA-GI-xx-B	Operating Range	1530 nm to 1560 nm
xx Output power level +18 – +24 dBm	Amplifier Design	Single stage with internal Gain Flattening Filter
	Output Power Levels	+18 dBm to +24 dBm
	Number of Pump Lasers	4 total, 980 nm (2) and 1480 nm (2)
	Input Signal Level per Channel	-7 dBm to -15 dBm, for gain flatness to ± 0.5 dB
TECHNICAL INFO	Number of Channels	Can accommodate 8 - 64
For technical info and support:	Optical Gain per Channel	13 dB to 21 dB, depending on input level
sales@optilab.com	Gain Flatness	± 0.5 dB
www.optilab.com	Noise Figure	5.0 dB typ.
	Polarization Dependent Gain (PDG)	0.2 dB max.
	Polarization Mode Dispersion (PMD)	0.5 ps max.
WEB ORDER	Output Power Stability	± 0.05 dB over 8 hours
	Input/Output Isolation	30 dB min.
	Optical Fiber	Single Mode, SMF-28
To order, please visit OEQuest.com.	Mechanical Specifications	
🌍 OEQuest .com	Operating Temperature	0° C to +50° C
	Storage Temperature	-40° C to +70° C
Optilab Advantage	Power Supply Requirements	80 - 240 V, 43 - 63 Hz AC
	Power Consumption	80 W max.
 Innovation 	Monitoring	Pump Laser Temperature
 Performance 	Computer Interface	USB
QualityCustomization	Display	Output Power Level, TEC Temperature
Warranty	Alarms	Temperature and Current Threshold
······	Optical Connectors	FC/APC, SC/APC
	Housing Dimensions	250mm(L) x 300mm(W) x 100mm(H)

EDFA-GI-B Gain Flatness¹

1 (Measured by Agilent 8703A Lightwave Component Analyzer)

